and its aza analogue. Table 3 shows some of its bond lengths and angles in comparison with the appropriate parameters in benzoyl(thiobenzoyl)methane (Richter et al., 1976), N-benzoyl- N^{\prime}, N^{\prime}-dimethylthiourea (Richter, 1985) and N-thiobenzoylbenzamide (Richter et al., 1983). Whereas the agreement between the 2-acylthioacetamide part of the molecule with benzoyl(thiobenzoyl)methane is excellent, there are some marked differences especially regarding the angles between the N-thioacylbenzamide part of the molecule and the structures of N -thiobenzoylbenzamide and N-benzoyl- N^{\prime}, N^{\prime}-dimethylthiourea. The main reason should be the considerably distorted conformation of this part $\left\{\omega_{1}[\mathrm{~S}(1) \mathrm{C}(1) \mathrm{N}(1) \mathrm{C}(2)]=\right.$ $164 \cdot 0$ and $\left.\omega_{2}[\mathrm{C}(1) \mathrm{N}(1) \mathrm{C}(2) \mathrm{O}(1)]=-5 \cdot 3^{\circ}\right\}$ in comparison with N-thiobenzoylbenzamide ($\omega_{1}=22.3$ and $\omega_{2}=18.2^{\circ}$) and N-benzoyl $-N^{\prime}, N^{\prime}$-dimethylthiourea ($\omega_{1}=120.8$ and $\omega_{2}=2 \cdot 4^{\circ}$).

References

Braun, U., Richter, R., Sieler, J., Beyer, L., Lindqvist, o., Yanovsky, A. I. \& Struchkov, Yu. T. (1987). Acta Cryst. C43, 92-95.

Hollander, F. J., Templeton, D. H. \& Zalkin, A. (1973). Acta Cryst. B29, 1552-1553.
Hünig, S., Hübner, K. \& Benzing, E. (1962). Chem. Ber. 95, 926-936.
Iliopoulos, P., Fallon, G. D. \& Murray, K. S. (1986). J. Chem. Soc. Dalton Trans. pp. 437-443.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, R. D. G. (1976). Acta Cryst. B32, 1807-1811.
Kornis, G., Marks, P. J. \& Chidester, C. G. (1980). J. Org. Chem. 45, 4860-4863.
Mizrahi, V. \& Niven, M. L. (1983). S. Afr. J. Chem. 36, 137-142.
Motherwell, W. D. S. (1972). PLUTO. A program for ploting molecular and crystal structures. Univ. of Cambridge, England.
Power, L. F., Turner, K. E. \& Moore, F. H. (1974). Tetrahedron Lett. pp. 875-876.
Power, L. F., Turner, K. E. \& Moore, F. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 249-252.
Richter, R. (1984). Unpublished results.
Richter, R. (1985). Unpublished results.
Richter, R., Beyer, L., Kaiser, J., Lindqvist, O., Liungström, E. \& Golič, L. (1983). Z. Anorg. Allg. Chem. 498, 139-152.

Richter, R., Sieler, J., Kaiser, J. \& Uhlemann, E. (1976). Acta Cryst. B32, 3290-3294.
Sheldrick, G. M. (1981). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
Williams, D. E. (1966). Acta Cryst. 21, 340-349.

Acta Cryst. (1989). C45, 1609-1612

Structures of Polyfluoroaromatic Compounds. XI.* Structures of Two Fluorinated Diphenyl Sulfides

By Neil Goodhand and Thomas A. Hamor
Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 16 January 1989; accepted 13 March 1989)

Abstract

I) Octafluoro-4,4'-bis(trifluoromethyl)diphenyl sulfide, $\mathrm{C}_{14} \mathrm{~F}_{14} \mathrm{~S}, M_{r}=466 \cdot 2$, monoclinic, $P 2_{1} / c, a=14.37$ (2),$b=5 \cdot 59$ (1), $c=19 \cdot 57$ (2) \AA, β $=96.38(5)^{\circ}, V=1562 \AA^{3}, Z=4, D_{x}=1.98 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=3.72 \mathrm{~cm}^{-1}, \quad F(000)=$ $904, T=293 \mathrm{~K}, R=0.042$ for 1060 observed reflections. (II) Octafluoro-4,4'-dinitrodiphenyl sulfide, $\mathrm{C}_{12} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, M_{r}=420 \cdot 2$, triclinic, $P \overline{1}, a=7 \cdot 42(1), b$ $=10.11(1), \quad c=10.71$ (1) $\AA, \quad \alpha=113.25(5), \quad \beta=$ 82.40 (7), $\gamma=83.05$ (6) ${ }^{\circ}, V=718 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.94 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мo $K \alpha)=0.71069 \AA \AA, \mu=3.48 \mathrm{~cm}^{-1}$, $F(000)=412, \quad T=293 \mathrm{~K}, \quad R=0.042 \quad$ for 1981 observed reflections. Both compounds adopt the twist conformation with the rings inclined at $46 \cdot 9$ (6) and $49.8(6)^{\circ}$ in (I), and 53.4 (2) and $61.0(2)^{\circ}$ in (II)

\footnotetext{ * Part X: Goodhand \& Hamor (1982).

0108-2701/89/101609-04\$03.00 }

to the central $\mathrm{C}-\mathrm{S}-\mathrm{C}$ plane. The bond angles at S are 102.0 (3) and 99.7 (1) in (I) and (II), respectively; the $\mathrm{C}-\mathrm{S}$ bond lengths average 1.763 (6) and 1.770 (3) \AA.

Introduction. In an earlier paper of this series (Goodhand \& Hamor, 1979), the structure of hexafluoro-4,4'-dinitro-3H, $3^{\prime} H$-diphenyl sulfide (henceforth DTFNPS) was described and compared with hydrocarbon analogues. It was noted that the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angle was some 4° smaller than in the unfluorinated analogues. We now report the structures of octa-fluoro-4,4'-bis(trifluoromethyl)diphenyl sulfide (I) and octafluoro-4,4'-dinitrodiphenyl sulfide (II) (Coe, Milner, Tatlow \& Wragg, 1972) as part of a continuing study of highly fluorinated organic molecules.
© 1989 International Union of Crystallography

Experimental. Both compounds were crystallized from ethanol. Approximate cell dimensions were obtained from oscillation, Weissenberg and precession photographs. Refined values and intensity data were measured on a Stoe STADI-2 diffractometer operating in the ω-scan mode. Crystal size: 0.7×0.3 $\times 0.5$ (I), $0.8 \times 0.8 \times 0.2 \mathrm{~mm}$ (II). For the upper layers of reflections, $h 21-h 51$ for (I) and $2 k l-8 k l$ for (II), a variable-scan-range technique was used, ω being calculated from $A+B \sin \mu / \tan \theta^{\prime}$ where μ is the equi-inclination angle and $2 \theta^{\prime}$ the azimuth angle. Values of A and B were 1.2 and $0.5(\mathrm{I})$ and 1.2 and $0 \cdot 9^{\circ}$ (II). For the lower layers the scan ranges were 1.6 and 1.4°. Backgrounds were measured for 30 s at each end of the scan; scan speed $0.01^{\circ} \mathrm{s}^{-1}$; data collection range 4-25 (I), 4-30 (II); 2807 (I), 3382 (II) reflections were scanned of which 1060 (I), 1981 (II) were considered observed $[I>2 \cdot 5 \sigma(I)]$ and used in the analysis. Layer scale factors, which were all close to unity, were calculated from four zero-layer reflections that were remeasured after each layer of data collection. Both structures were solved by direct methods with SHELX76 (Sheldrick, 1976) and refined by least squares on F values with anisotropic thermal parameters for all atoms. For the CF_{3} groups in compound (I) two sites could be found for each F atom corresponding to two orientations of these groups. The coordinates of the disordered F atoms were not refined. Refinement of site occupation factors showed that in one case the two orientations occurred in the ratio $2: 1$, whereas in the other, the ratio was approximately 1:1 (see Table 1). For both structures least-squares refinement was terminated when all shift/e.s.d. ratios were $<0 \cdot 1$. Final R and $w R$ are 0.042 and 0.041 (I), and 0.042 and 0.045 (II), $w=1 / \sigma^{2}(F)$; residual electron density ± 0.2 (I) and $\pm 0.3 \mathrm{e} \AA^{-3}$ (II); atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Computations were carried out on the University of Birmingham ICL 1906A and on the CDC 7600 at the University of Manchester Regional Computer Centre.

Discussion. Atomic coordinates for compounds (I) and (II) are listed in Tables 1 and 2,* and bond lengths and angles are in Tables 3 and 4 . The conformation of the molecules and the atom numbering are illustrated in Figs. 1 and 2.

The angle between the mean planes of the phenyl rings is $76.8(5)$ [compound (I)] and $83.6(2)^{\circ}$ [compound (II)]. In both structures the phenyl rings

[^0]Table 1. Fractional atomic coordinates with e.s.d.'s in parentheses and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for compound (I)

	$U_{\text {eq }}=\frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i}, \mathrm{a}_{j}$.			
	x	y	z	$U_{\text {ca }}$
S1	-0.3346 (1)	0.1173 (4)	-0.3609 (1)	0.085
Cl	-0.3383 (4)	0.1629 (13)	-0.2724 (3)	0.057
C2	-0.3028 (4)	0.0077 (12)	-0.2216 (3)	0.054
C3	-0.3140 (4)	0.0445 (12)	-0.1540 (3)	0.058
C4	-0.3621 (4)	$0 \cdot 2340$ (13)	-0.1326(3)	0.054
C5	-0.3978 (4)	$0 \cdot 3924$ (13)	-0.1832 (3)	0.057
C6	-0.3864 (4)	$0 \cdot 3558$ (13)	-0.2514 (3)	0.058
C7	-0.3756 (3)	$0 \cdot 2643$ (11)	-0.0576 (2)	0.085
Cl^{\prime}	-0.2154 (4)	0.0456 (12)	-0.3646 (3)	0.057
C2'	-0.1423 (5)	0.1830 (13)	-0.3361 (3)	0.067
C3'	-0.0514 (5)	0.1223 (14)	-0.3428 (3)	0.069
C4'	-0.0273 (5)	-0.0643 (14)	-0.3804 (3)	0.069
C5'	-0.0998 (6)	-0.2036 (14)	-0.4091 (3)	0.077
C6 ${ }^{\prime}$	-0.1916 (5)	-0.1503 (14)	-0.4013 (3)	0.073
Cl^{7}	0.0719 (2)	-0.1293 (14)	-0.3903 (3)	0.104
F2	-0.2560 (3)	-0.1873 (7)	-0.2389 (2)	0.083
F3	-0.2762 (2)	-0.1181 (6)	-0.1081 (2)	0.085
Fs	-0.4462 (2)	0.5867 (7)	-0.1676 (2)	0.085
F6	-0.4241 (2)	0.5161 (7)	-0.2969 (2)	0.085
F2'	-0.1597 (2)	0.3792 (7)	-0.3006 (2)	0.098
F3'	0.0155 (3)	0.2659 (8)	-0.3121 (2)	0.117
Fs'	-0.0856 (3)	-0.3988 (9)	-0.4463 (2)	0.121
F6'	-0.2600 (3)	-0.2924 (8)	-0.4303 (2)	0.111
F7A*	-0.2955	0.2546	-0.0208	0.139
F7B ${ }^{\text {a }}$	-0.4102	0.4832	-0.0459	0.124
F7C*	-0.4237	0.1052	-0.0369	0.190
F7D \dagger	-0.3010	0.3635	-0.0246	0.225
F7Et	-0.4496	0.3550	-0.0462	0.156
F7F¢	-0.3910	0.0651	-0.0261	0.128
F7'A \ddagger	0.0789	-0.1494	-0.4557	0.130
F7'日才	0.1388	0.0250	-0.3609	0.139
$\mathrm{F}^{\prime} \mathrm{C} \ddagger$	0.0990	-0.3257	-0.3615	0.143
F7'DS	0.0815	-0.3227	-0.4297	0.201
F7'Es	$0 \cdot 1193$	-0.1551	-0.3994	0.214
F7'Fs	0.1022	0.0470	-0.4292	0.158
*Site occupation 0.66 (2). \dagger Site occupation 0.34 (2). \ddagger Site occupation 0.51 (3). §Site occupation 0.49 (3).				

Table 2. Fractional atomic coordinates with e.s.d.'s in parentheses and equivalent isotropic temperature factors (\AA^{2}) for compound (II)

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

Table 3. Molecular geometry for compound (I)

(a) Bond lengths (\AA) with e.s.d.'s in parentheses			
$\mathrm{Sl}-\mathrm{Cl}$	1.757 (5)	$\mathrm{SI}-\mathrm{Cl}^{\prime}$	1.768 (6)
$\mathrm{Cl}-\mathrm{C} 2$	1.374 (8)	$\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	1.369 (8)
$\mathrm{Cl}-\mathrm{C} 6$	1.368 (8)	$\mathrm{Cl}{ }^{\prime}-\mathrm{C6}^{\prime}$	1.374 (8)
C2-C3	1.366 (7)	C2'-C3'	1.370 (8)
C2-F2	1.344 (6)	C2'-F2'	1.337 (7)
C3-C4	1.356 (8)	C3'-C4'	1.344 (8)
C3-F3	1.349 (6)	C3'-F3'	1.342 (7)
C4-C5	1.384 (8)	C4'- C^{\prime}	1.370 (9)
C4-C7	1.511 (6)	C4'-C7 ${ }^{\prime}$	1.504 (7)
C5-C6	1.378 (7)	C5'-C6'	1.377 (8)
C5-F5	1.343 (6)	C5'-F5'	1.340 (7)
C6-F6	$1 \cdot 335$ (6)	C6'-F6 ${ }^{\prime}$	1.340 (7)
C7-F7A	1.289	C7'-F7'A	1.300
C7-F7B	1.350	C7'-F7'B	1.370
C7-F7C	1.223	$\mathrm{Cl}^{\prime}-\mathrm{F} 7^{\prime} \mathrm{C}$	1.275
C7-F7D	1.311	C7'-F7 ${ }^{\prime}$	1.344
C7-F7E	1.221	$\mathbf{C 7}$ - F^{\prime} E	1.152
C7-F7F	1.304	C ${ }^{\prime}$ - F^{\prime} F	1.347
(b) Bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses			
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl}^{\prime}$	102.0 (3)		
$\mathrm{SI}-\mathrm{Cl}-\mathrm{C} 2$	124.9 (6)	S1-C1-C2'	124.0 (5)
$\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 6$	118.8 (5)	S1- $\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	120.0 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$116 \cdot 1$ (5)	$\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	$115 \cdot 8$ (6)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	122.1 (6)	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}$	121.2 (6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 2$	119.1 (5)	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{F} 2^{\prime}$	119.5 (6)
C3-C2-F2	118.8 (6)	C3'-C2'-F2'	119.2 (6)
C2-C3-C4	122.4 (6)	C2'-C3'-C4 ${ }^{\prime}$	$123 \cdot 4$ (7)
C3-C4-C5	116.1 (6)	C3'-C4'- $\mathrm{C} 5^{\prime}$	$115 \cdot 8$ (6)
C4-C5-C6	121.6 (6)	C4'-C5'- $\mathbf{C 6}^{\prime}$	121.7 (7)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	121.8 (6)	$\mathrm{Cl}{ }^{-}-\mathrm{C}^{\prime}-\mathrm{C5}^{\prime}$	121.8 (6)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{F} 6$	120.6 (6)	$\mathrm{Cl}{ }^{\prime}-\mathrm{C6}^{\prime}-\mathrm{F6}^{\prime}$	118.7 (7)
C5-C6-F6	117.6 (6)	C5'- ${ }^{\prime} 6^{\prime}-\mathrm{F} 6^{\prime}$	119.4 (7)
(c) Torsion angles $\left(^{\circ}\right.$); e.s.d.'s $0.9{ }^{\circ}$			
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{C} 1-\mathrm{C} 2$		$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl}^{\prime}-\mathrm{C2}^{\prime}$	-52.5
C1'-S1-C1-C6		$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl}^{\prime}-\mathrm{C6}^{\prime}$	131.7

Table 4. Molecular geometry for compound (II)

(a) Bond lengths (\AA) with e.s.d.'s in parentheses			
$\mathrm{Sl}-\mathrm{Cl}$	1.768 (3)	$\mathrm{Sl}-\mathrm{Cl}^{\prime}$	1.773 (3)
$\mathrm{Cl}-\mathrm{C} 2$	1.382 (3)	$\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	1.386 (3)
$\mathrm{Cl}-\mathrm{C} 6$	1.389 (3)	$\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}$	1.378 (4)
C2-C3	1.365 (4)	C2'- Cl^{\prime}	$1 \cdot 372$ (4)
C2-F2	$1 \cdot 344$ (3)	$\mathrm{C}^{\prime}-\mathrm{F}^{\prime}{ }^{\prime}$	1.334 (3)
C3-C4	1.380 (3)	$\mathrm{Cl}^{\prime}-\mathrm{C4}^{\prime}$	$1 \cdot 375$ (4)
C3-F3	1.330 (3)	C^{\prime} - F^{\prime}	1.334 (3)
C4-C5	1.382 (4)	$\mathrm{Ca}^{\prime}-\mathrm{Cs}^{\prime}$	1.369 (4)
C4-N4	1.460 (4)	$\mathrm{C4}^{\prime}-\mathrm{Na}^{\prime}$	1.474 (4)
C5-C6	1.366 (4)	$\mathrm{Cs}^{\prime}-\mathrm{Cb}^{\prime}$	1.382 (4)
C5-F5	1.337 (3)	C5'-F5'	1.337 (3)
C6-F6	$1 \cdot 338$ (3)	C6 ${ }^{\prime}-\mathrm{Fb}^{\prime}$	1.339 (3)
$\mathrm{N} 4-\mathrm{Ol}$	$1 \cdot 210$ (3)	$\mathrm{N} 4^{\prime}-\mathrm{Ol}^{\prime}$	1.188 (3)
N4-02	1.211 (3)	$\mathrm{N} 4^{\prime}-\mathrm{O}^{\prime}$	1.191 (3)

(b) Bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses			
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl}^{\prime}$	99.7 (1)		
$\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 2$	122.3(2)	$\mathrm{Sl}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	121.8 (2)
$\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 6$	120.5 (2)	$\mathrm{Sl}-\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}$	121.0 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	117.1 (2)	$\mathrm{C2}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}$	117.2 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	122.0 (2)	$\mathrm{Cl}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{Cl}^{\prime}$	121.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 2$	119.4 (2)	$\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Fr}^{\prime}$	118.9 (2)
C3-C2-F2	118.6 (2)	$\mathrm{C3}^{\prime}-\mathrm{C}^{\prime}$ '-F2 ${ }^{\prime}$	120.0 (2)
C2-C3-C4	119.7 (2)	$\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 4^{\prime}$	120.7 (2)
C3-C4-C5	119.7 (2)	$\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C} 5^{\prime}$	119.4 (2)
C4-C5-C6	119.6 (2)	$\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}-\mathrm{C} 6^{\prime}$	119.4 (2)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	121.9 (2)	$\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}-\mathrm{Cs}^{\prime}$	$122 \cdot 2$ (2)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{F} 6$	119.6 (2)	$\mathrm{Cl}^{-}-\mathrm{Cb}^{\prime}-\mathrm{F}^{\prime}$	119.9 (2)
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{F} 6$	118.6 (2)	$\mathrm{C} 5^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{F} 6^{\prime}$	117.9 (2)
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{Ol}$	117.5 (3)	$\mathrm{C4}^{\prime}-\mathrm{N}^{\prime}-\mathrm{Ol}^{\prime}$	117.1 (3)
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{O} 2$	117.1 (3)	$\mathrm{C4}^{\prime}-\mathrm{N} 4^{\prime}-\mathrm{O} 2^{\prime}$	117.7 (3)
$\mathrm{O} 1-\mathrm{N} 4-\mathrm{O} 2$	$125 \cdot 3$ (3)	$\mathrm{Ol}^{\prime}-\mathrm{N4}^{\prime}-\mathrm{O}^{\prime}$	$125 \cdot 2$ (3)

(c) Torsion angles $\left(^{\circ}\right.$); e.s.d.'s 0.3°
$\mathrm{Cl}^{\prime}-\mathrm{Sl}-\mathrm{Cl}-\mathrm{C}_{2} \quad-55.6 \quad \mathrm{C} 1-\mathrm{Sl}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$ $\begin{array}{lll}\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 6 & 127.8 & \mathrm{Cl}-\mathrm{Si}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}\end{array}$
are inclined at approximately the same angle to the central $\mathrm{C}(1)-\mathrm{S}-\mathrm{C}\left(1^{\prime}\right)$ plane, $46 \cdot 9$ (6) and $49 \cdot 8$ (6) ${ }^{\circ}$ in (I), and 53.4 (2) and $61.0(2)^{\circ}$ in (II), corresponding to the 'twist' conformation in the notation of Van Der Heijden, Griffith, Chandler \& Robertson (1975). The nitro groups of (II) are oriented at angles of $57.8(3)$ and $57.4(3)^{\circ}$ to their respective phenyl planes, compared with $12 \cdot 6^{\circ}$ in DTFNPS (Goodhand \& Hamor, 1979), 6.3° in 4-nitrodiphenyl sulfide (Krajewski, Riva di Sanseverino, Dondoni \& Mangini, 1975) and $1 \cdot 2^{\circ}$ in 4-dimethylamino- 4^{\prime}-nitrodiphenyl sulfide (Krajewski et al., 1975). The relatively large angle in (II) may be attributed to the need to avoid close contacts between the O atoms of the nitro group and the two adjacent fluorine substituents, $\mathrm{F} \cdots \mathrm{O}$ distances being in the range 2.85 $2 \cdot 88 \AA$. In the DTFNPS structure (Goodhand \& Hamor, 1979) a much closer F \cdots O contact of $2.58 \AA$ occurs, the unfavourable energetics of which are compensated by an attractive interaction between the other O atom and the adjacent H atom. The O atoms of the nitro groups in the title compound (II) have relatively large thermal parameters, and this could be an indication of some freedom of rotation about the $\mathrm{C}-\mathrm{NO}_{2}$ bonds, or of some degree of disorder in the orientations of the nitro groups.
The aromatic $\mathrm{C}-\mathrm{C}$ bond lengths are in the range $1.344-1 \cdot 384$, mean $1.369 \AA$ in (I) and $1.365-1.389$, mean $1.377 \AA$ in (II). They compare with a mean of $1.374 \AA$ in DTFNPS. These values indicate a slight shortening of the aromatic bonds relative to hydrocarbon analogues. The $\mathrm{C}-\mathrm{S}$ bond lengths average 1.763 and $1.770 \AA$ in the two compounds in good agreement with the corresponding bonds in

Fig. 1. Stereoscopic view of molecule (I) in a direction perpendicular to the plane of atoms $C(1), S, C\left(1^{\prime}\right)$ drawn with PLUTO (Motherwell \& Clegg, 1978).

Fig. 2. Stereoscopic view of molecule (II). View direction as for Fig. 1.

DTFNPS (mean $1.771 \AA$), but slightly shorter than in a selection of unfluorinated diphenyl sulfides where the mean length is $1.780 \AA$. Such a shortening of bond lengths in fluorinated compounds has been noted previously (Goodhand \& Hamor, 1979, and references therein).

With respect to the bond angle at S , Goodhand \& Hamor (1979) noted that in the fluorinated compound DTFNPS this was 99.7°, significantly smaller than in unfluorinated analogues, where this angle ranged from $102 \cdot 9$ to $105 \cdot 6$, mean $103 \cdot 7^{\circ}$. More recent studies have, however, revealed somewhat smaller $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles in a small number of diphenyl sulfide systems, the smallest value ($101 \cdot 2^{\circ}$) occurring in the crystal structure of 2-nitro-1,3-bis(phenylthio)benzene (Lynch, Simonsen, Miller, Turley \& Martin, 1985). The C-S-C angles in the title compounds, 102.0° in (I) and 99.7° in (II) are, nevertheless, still consistent with the overall trend noted previously.

There are no abnormal intermolecular contact distances in either structure. The shortest contact, $2.744 \AA$, occurs in structure (I), between F^{\prime} and F7' E of the disordered trifluoromethyl group of the molecule at $-x, \frac{1}{2}+y,-\frac{1}{2}-z$.

We thank Dr P. L. Coe and Professor J. C. Tatlow for suggesting this problem and for samples of the title compounds, the University of Birmingham for the award of a Research Studentship (to NG), and the staff of the University Computer Centre for their assistance.

References

Coe, P. L., Milner, M. E., Tatlow, J. C. \& Wragg, R. T. (1972). Tetrahedron, 28, 105-109.

Goodhand, N. \& Hamor, T. A. (1979). J. Fluorine Chem. 14, 223-233.
Goodhand, N. \& Hamor, T. A. (1982). Acta Cryst. B38, 13421345.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Krajewski, A., Riva di Sanseverino, L., Dondoni, A. \& Mangini, A. (1975). J. Cryst. Mol. Struct. 5, 345-351.
lynch, V. M., Simonsen, S. H., Miller, R. F., Turley, J. C. \& Martin, G. E. (1985). Acta Cryst. C41, 1240-1242.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Van der Heiden, S. P. N., Griffith, E. A. H., Chandler, W. D. \& Robertson, B. E. (1975). Can. J. Chem. 53, 2084-2092.

Malotilate: Structure and Phase Transformation

By D. R. Vega and R. F. Baggio*
Departamento de Física, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, Buenos Aires 1429, Argentina

(Received 13 July 1988; accepted 27 February 1989)

Abstract

C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{2}, \quad M_{r}=288.4\). Two phases: phase A : monoclinic, $P 2_{1} / a, a=22.425$ (3), $b=$ 8.273 (2), $\quad c=15.713$ (3) $\AA, \quad \beta=96.66$ (1) $)^{\circ}, \quad V=$ $2895(1) \AA^{3}, \quad Z=8, \quad D_{x}=1 \cdot 323, \quad D_{m}=$ $1.320(2) \mathrm{g} \mathrm{cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu$ $=3.55 \mathrm{~cm}^{-1}, F(000)=1216$, final conventional R factor $=0.071$, for 1404 observed $[I>2 \sigma(I)]$ reflexions out of 4530 unique; phase B : triclinic, $P \overline{1}, a=$ 11.515 (2),$\quad b=11.840$ (2), $\quad c=12.097$ (2) $\AA, \quad \alpha=$ 94.57 (2),$\quad \beta=102.91$ (2), $\quad \gamma=100.81$ (2) ${ }^{\circ}, \quad V=$ 1566 (1) $\AA^{3}, \quad Z=4, \quad D_{x}=1 \cdot 212, \quad D_{m}=$ $1.215(2) \mathrm{g} \mathrm{cm}^{-3}$, Mo K α radiation, $\lambda=0.7107 \AA, \mu$ $=3.28 \mathrm{~cm}^{-1}, F(000)=608$, final conventional $R=$ 0.059 , for 2338 observed [$I>3 \sigma(I)$] reflexions out of 4585 unique. Data gathered at room temperature. In

[^1]0108-2701/89/101612-05\$03.00
both structures the asymmetric unit consists of two independent moieties, which in form A are found to pack more closely than in form B, as seen from the measured density values. This is achieved through an overall greater departure of the molecule from planarity giving rise to a geometry more amenable to dense stacking. Intermolecular interactions are mainly van der Waals, with only a few weak hydrogen bonds present (shortest $\mathrm{O} \cdots \mathrm{H}: 2 \cdot 32 \AA$).

Introduction. Malotilate $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{2}\right.$, diisopropyl 1,3-dithiol-2-ylidenemalonate, (I)] is a very powerful hepatoprotector and activator, which in the last few years has merited the increasing attention of a number of research workers in the field of biology, to the point of having specific meetings organized on the subject (Symposium on Malotilate held at the 7th

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52026 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

